Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

1,2,4-Triazolo[2,3-h]-7,9-thiaza-11-crown-4

Fatima Lazrak, ${ }^{\text {a }}$ El-Mokhtar Essassi, ${ }^{\text {a }}$ Brahim El-Bali ${ }^{\text {b }}$ and Michael Bolte ${ }^{\text {c* }}$
${ }^{\text {a }}$ Laboratoire de Chimie Organique Héterocyclique, Départment de Chimie, Faculté des Sciences, Av. Ibn Batouta, Rabat, Morocco, ${ }^{\text {b }}$ Départment de Chimie, Faculté des Sciences Dhar Mehraz, Fés, Morocco, and ${ }^{\text {I Institut für Organische Chemie, J.-W.- }}$ Goethe-Universität Frankfurt, Marie-Curie-Straße 11, 60439 Frankfurt/Main, Germany
Correspondence e-mail: bolte@chemie.uni-frankfurt.de

Received 28 February 2000
Accepted 10 March 2000
Data validation number: IUC0000067
The title compound, 4,7-dioxa-10-thia-1,12,13-triazabi-cyclo[9.3.0]tetradeca-11,13-diene, $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$, contains an 11-membered ring, which appears in a chair conformation and has approximate mirror symmetry. It may be used for the complexation of metal atoms.

Comment

The elaboration of new molecular models for the recognition and the transport of metal atoms constitutes a field of research which has developed rapidly during recent years (Pedersen, 1967; Reinhoudt et al., 1976; Cram \& Ho, 1986; Bradshaw et al., 1986; Kumar et al., 1992). The title compound, (I), had been synthesized with the aim to study its complexing properties. Since the condensation of dichlorotriethylene glycol with 1,2,4-triazole-5-thione could lead to two different constitutional isomers, which could not be distinguished by NMR spectroscopy, we have carried out an X-ray structure analysis to establish unambiguously the constitution of the reaction product.

(I)

The geometry of the title compound shows no unusual features. The conformation of the crown ether can be described as a chair, with C 5 and the bond $\mathrm{N} 10-\mathrm{C} 11$ being the two end points. The torsion-angle pattern in the ring shows an approximate mirror symmetry with the mirror plane running through C 5 and the centre of the $\mathrm{N} 10-\mathrm{C} 11$ bond. Only the torsion angles $\mathrm{C} 2-\mathrm{C} 3-\mathrm{O} 4-\mathrm{C} 5$ and $\mathrm{C} 5-\mathrm{C} 6-$
$\mathrm{O} 7-\mathrm{C} 8$ are close to an antiperiplanar conformation, while apart from $\mathrm{C} 9-\mathrm{N} 10-\mathrm{C} 11-\mathrm{S} 1$, which is synperiplanar, all other torsion angles are more or less anti- or synclinal, respectively.

Experimental

To a solution of $1,2,4$-triazole- 5 -thione ($1.01 \mathrm{~g}, 0.01 \mathrm{~mol}$) and dichlorotriethylene glycol ($1.87 \mathrm{~g}, 0.01 \mathrm{~mol}$) in dimethylformamide $(60 \mathrm{ml})$, potassium carbonate $(4.15 \mathrm{~g}, 0.03 \mathrm{~mol})$ were added. The mixture was stirred for 24 h at 303 K , then filtred and dried. The residue was extracted, dried and recrystallized from ethyl acetate.

Crystal data

$\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$
$M_{r}=215.27$
Monoclinic, $P 2_{1} / c$
$a=8.230(1) \AA$ 。
$b=15.423$ (2) \AA
$c=8.476$ (1) \AA
$\beta=113.81(3)^{\circ}$
$V=984.3(2) \AA^{3}$
$Z=4$
$D_{x}=1.453 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 1147
reflections
$\theta=1-25^{\circ}$
$\mu=0.307 \mathrm{~mm}^{-1}$
$T=173$ (2) K
Block, colourless
$0.50 \times 0.30 \times 0.20 \mathrm{~mm}$

Data collection

Siemens CCD three-circle diffractometer
ω scans
Absorption correction: empirical
(SADABS; Sheldrick, 1996)
$T_{\min }=0.862, T_{\max }=0.941$
13240 measured reflections
2257 independent reflections
1673 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0314 P)^{2} \\
&+0.3771 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.25 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.26 \mathrm{e} \AA^{-3}
\end{aligned}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$w R\left(F^{2}\right)=0.081$
$S=1.032$
2257 reflections
127 parameters
H -atom parameters constrained
$R_{\text {int }}=0.066$
$\theta_{\text {max }}=27.48^{\circ}$
$h=-10 \rightarrow 10$
$k=-20 \rightarrow 20$
$l=-11 \rightarrow 11$
115 standard reflections frequency: 960 min intensity decay: none

H -atom positions were idealized and constrained to ride on their parent atoms; aromatic $\mathrm{C}-\mathrm{H}=0.95 \AA$ or secondary $\mathrm{C}-\mathrm{H}=0.99 \AA$, and fixed individual displacement parameters $\left[U(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})\right]$.

Data collection: SMART (Siemens, 1995); cell refinement: SMART; data reduction: SAINT (Siemens, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997).

References

Bradshaw, J. S., Nielsen, R. B., Tse, P.-K., Arena, G., Wilson, B. E., Dalley, N. K., Lamb, J. D., Christensen, J. J. \& Izatt, R. M. (1986). J. Heterocycl. Chem. 23, 361-368.
Cram, D. J. \& Ho, S. P. (1986). J. Am. Chem. Soc. 108, 2998-3005.
Kumar, S., Saini, R. \& Singh, H. (1992). Tetrahedron Lett. 33, 7937-7940.
Pedersen, C. J. (1967). J. Am. Chem. Soc. 89, 7017-7036.
Reinhoudt, D. N., Gray, R. T., Smit, C. J. \& Veenstra, Ms. I. (1976). Tetrahedron, 32, 1161-1169.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Siemens (1995). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

